

Best Practices Sub-committee

RETAC Update June 11, 2009

Best Practices Sub-committee Members

Susan Arigoni, Xcel Energy, Inc.
Alan Shaw, Norfolk Southern RR
Kent Smith, Arch Coal
David Rohal, RailAmerica
Henry Rupert, CSX Transportation

Best Practices Sub-committee Goal

The goal of the Best Practices Subcommittee is to identify best practices in the energy supply chain that promote the efficient and reliable delivery of energy resources.

Best Practice: An activity, process or investment that results in improved reliability, lower operating expense, increased productivity or lower risk for the supply chain.

Best Practices Sub-committee

The current condition of the supply chain is sub-optimal because a common understanding of business practices between participants is not shared, and the benefits across the supply chain are not recognized.

Best Practices Alignment Matrix

				Communication	
		Operating	Physical	& Tactical	Commercial
	Best Practice	Practices	Infrastructure	Execution	Practices
Receiver	Adequate receiver stockpile targets				
	Receiver unloads upon arrival				
	Diversified supply sources				
	Receiver employs strong traffic team				
	Preventive maintenance on coal handling equipment				
	Adequate space for stockpile				
	Receiver communicates lead time on			-	
	incidents restricting delivery				
	Balanced purchasing month-to-month				
Railroad	Railroad maximixes slots				
	Efficient ratable railroad network				
	Capacity supply/demand balance				
roducer	Mines load on arrival 24/7				
	Adequate pile or uncovered coal at mine				
	Mine computerized batch weigh				
	Coal marketing balances production				
	and sales				

Progress since last meeting

- Reviewed work with other RETAC members
- Completed next item for white paper report
 - Item F Consensus and Perspectives

Consensus Achieved on the Following

- Best practices that impact reliability can be identified for each of the participants within the energy supply chain
- Optimization occurs when individual participants work together to improve reliability of the overall supply chain
- Implementation of best practices should lead to lower direct or indirect costs for participants
- Identification of best practices is easier than practical application – this will take commitment from participants ushered through forums like RETAC and other industry-wide groups.

Implementation of Best Practices

- Improved reliability of energy products
- Decreased direct costs of supply chain
- Communication and tactical execution best practices may be easiest to implement

Implementation Issues

- Cost and benefits may be unaligned
- Implementation of a practice that benefits one participant at the expense of others
- Knowledge and awareness of best practices

Railroad Perspective

The three railroad best practices and implementation difficulty are:

- A.
- Maximize Slots The ability of transportation providers to maximize capacity is dependent on overall demand other limiting factors such as sidings, grade and traffic density. Railroads maximize capacity by operating the largest trains possible in each available slot. Customers help by scheduling and operating the large trains possible for the slot.
- Efficient Railroad Network Efficiency is improved by effective execution of operating plans, having sufficient resources to support business levels and maintaining the physical plant in good operating condition. As an open enterprise, efficiency is impaired when demand increases rapidly or during period of high volatility.
- Capacity Supply/Demand Balance Unplanned shifts in demand that impact the density of traffic either result in inefficient operations or stranded assets. Long term forecasts and business are important to insure sufficient physical plant is available. Joint tactical planning and order management activity are also important.

Producer Perspective

The four producer best practices and implementation difficulty are:

- Mines load on arrival 24/7 For larger mining operations this can be accomplished fairly easily however smaller operations can be constrained by manpower or budget issues.
- Adequate pile or uncovered coal at mine Usually directly related to the mining region. In the PRB adequate amounts of pit inventory are fairly simple to maintain. In other regions topography can severely limit the amount of inventory space available. Increasing the storage capacity can require major capital investments. The predictable, ratable deliveries of rail equipment can assist mining operations in maintaining adequate levels of inventory.
- Mine computerized batch weigh Typically simple to implement however some operations may have difficulty obtaining an adequate return on the capital required to install a system. Topography can also have a major impact on the capital required.
- Coal marketing balances production fairly easy to accomplish however even mines with extensive exploratory drilling often encounter geological issues that can alter production.

Receiver Perspective

The eight receiver best practices and implementation difficulty are:

- Adequate stockpile targets Can be modeled using plant specific variables such as cycle time, outage rates
- Receiver unloads upon arrival Difficult or easy based on crew schedules and permits
- Diversified supply source I deal but may not be cost effective
- Employs strong traffic team Easy with training and experience
- Preventative maintenance on coal handling equipment Subject to budget constraints
- Adequate stockpile space Dependent on plant location and available space
- Communicate lead time on incidents restricting delivery Easy if communication processes between parties are clear and followed
- Balanced purchasing month-to-month Easy to plan, sometimes difficult to implement due to generation uncertainty

Next Steps

Complete last steps for white paper Circulate to RETAC co-leaders and members

Present draft at fall RETAC meeting